Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries.

نویسندگان

  • Jun Liu
  • Kun Tang
  • Kepeng Song
  • Peter A van Aken
  • Yan Yu
  • Joachim Maier
چکیده

Sodium-ion batteries are considered as prime alternatives to lithium-ion batteries for large-scale renewable energy storage units due to their low cost and the abundance of sodium bearing precursors in the earth's mineral deposits. In the current work, a 3D NASICON framework Na3V2(PO4)3/carbon cathode electrode with 20-30 nm Na3V2(PO4)3 nanoparticles uniformly encapsulated interconnecting one-dimensional carbon nanofibers was fabricated using a simple and scalable electrospinning method. The Na3V2(PO4)3/C cathode showed an initial charge capacity of 103 mA h g(-1) and a discharge capacity of 101 mA h g(-1) (calculated on the total mass of Na3V2(PO4)3 and carbon) at 0.1C rate, and retained stable discharge capacities of 77, 58, 39 and 20 mA h g(-1) at high current densities of 2C, 5C, 10C and 20C, respectively. Moreover, because of the efficient 1D sodium-ion transport pathway and the highly conductive network of Na3V2(PO4)3/C, the electrode exhibited high overall capacities even when cycled at high currents, extending its usability to high power applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boron Substituted Na3V2(P1 −xBxO4)3 Cathode Materials with Enhanced Performance for Sodium‐Ion Batteries

The development of excellent performance of Na-ion batteries remains great challenge owing to the poor stability and sluggish kinetics of cathode materials. Herein, B substituted Na3V2P3-x B x O12 (0 ≤ x ≤ 1) as stable cathode materials for Na-ion battery is presented. A combined experimental and theoretical investigations on Na3V2P3-x B x O12 (0 ≤ x ≤ 1) are undertaken to reveal the evolution ...

متن کامل

Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries

Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are...

متن کامل

A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries.

High-energy batteries need significant cathodes which can simultaneously provide large specific capacities and high discharge plateaus. NASICON-structured Na3V2(PO4)3 (NVP) has been utilised as a promising cathode to meet this requirement and be used in the construction of high energy batteries. For a hybrid-ion battery by employing metallic lithium as an anode, NVP exhibits an initial specific...

متن کامل

A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries.

A low-voltage plateau at ∼0.3 V is discovered for the deep sodiation of Na3V2(PO4)3 by combined computational and experimental studies. This new low-voltage plateau doubles the sodiation capacity of Na3V2(PO4)3, thus turning it into a promising anode for Na-ion batteries.

متن کامل

Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries

Na3V2(PO4)3 (NVP) has been considered as a very promising cathodematerial for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2014